Semiparametric Relative-risk Regression for Infectious Disease Data
نویسنده
چکیده
This paper introduces semiparametric relative-risk regression models for infectious disease data based on contact intervals, where the contact interval from person i to person j is the time between the onset of infectiousness in i and infectious contact from i to j. The hazard of infectious contact from i to j is λ0(τ)r(β T 0Xij), where λ0(τ) is an unspecified baseline hazard function, r is a relative risk function, β0 is an unknown covariate vector, and Xij is a covariate vector. When who-infects-whom is observed, the Cox partial likelihood is a profile likelihood for β maximized over all possible λ0(τ). When whoinfects-whom is not observed, we use an EM algorithm to maximize the profile likelihood for β integrated over all possible combinations of who-infected-whom. This extends the most important class of regression models in survival analysis to infectious disease epidemiology.
منابع مشابه
Generalized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملNonparametric and Semiparametric Analysis of Current Status Data Subject to Outcome Misclassification.
In this article, we present nonparametric and semiparametric methods to analyze current status data subject to outcome misclassification. Our methods use nonparametric maximum likelihood estimation (NPMLE) to estimate the distribution function of the failure time when sensitivity and specificity are known and may vary among subgroups. A nonparametric test is proposed for the two sample hypothes...
متن کاملSemiparametric regression modeling with mixtures of Berkson and classical error, with application to fallout from the Nevada test site.
We construct Bayesian methods for semiparametric modeling of a monotonic regression function when the predictors are measured with classical error. Berkson error, or a mixture of the two. Such methods require a distribution for the unobserved (latent) predictor, a distribution we also model semiparametrically. Such combinations of semiparametric methods for the dose response as well as the late...
متن کاملAdditive Hazard Regression Models: An Application to the Natural History of Human Papillomavirus
There are several statistical methods for time-to-event analysis, among which is the Cox proportional hazards model that is most commonly used. However, when the absolute change in risk, instead of the risk ratio, is of primary interest or when the proportional hazard assumption for the Cox proportional hazards model is violated, an additive hazard regression model may be more appropriate. In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012